Суббота, 15 Декабрь 2018
> ГЛАВНАЯ БИБЛИОТЕКА Полет на планере
Полет на планере
29.09.09 23:13
Оглавление
Полет на планере
Страница 2
Страница 3
Все страницы
Е. РУДЕНСКИЙ
ПОЛЕТ НА ПЛАНЕРЕ
Пособие для планеристов


Руденский Е. Г.
Полет на планере. Пособие для планеристов. М, ДОСААФ, 1977.
144 с. с ил
В данном пособии излагаются общие сведения по метеорологии, практические приемы анализа и прогноза погоды, решение задач оптимального полета на планере, рассказывается о теоретических основах парения, освещаются вопросы выбора соответствующей тактики полета по маршруту или на высоту (с использованием волновых восходящих потоков) в зависимости от конкретных метеоусловий
Пособие предназначено для специалистов и спортсменов-планеристов всех категорий, знакомых с основами аэродинамики, метеорологии и прочности летательных аппаратов


От автора
Планеризму — одному из наиболее увлекательных видов спорта — более 50 лет. За этот период он сформировался в самостоятельный раздел авиации со своим обширным теоретическим и техническим фундаментом. Благодаря значительным успехам в области планеростроения, приборостроения и метеообслуживания полетов этот спорт развивается быстрыми темпами. Поэтому особое значение приобретает уровень подготовки инструкторов, преподавателей и спортсменов по теории парения, технике и тактике парящего полета, метеорологии. Настоящее учебное пособие посвящено как раз этим вопросам планеризма.
Не весь материал, включенный в книгу, равноценен по значению. Часть его представляет преимущественно методический или чисто теоретический интерес, однако его привлечение необходимо для понимания других разделов. Из-за ограниченного объема учебного пособия автор стремился не дублировать смежные темы теории и тактики парения. Материал излагается поэтому в сжатой конспективной форме. Особое внимание уделено практическому применению теории парения и метеорологии в реальных полетах.
Учебное пособие состоит из четырех глав. Каждую из них можно рассматривать как самостоятельную, и все же дополняя и углубляя одна другую, они составляют единое, неразрывное целое.
Изложение проблемных вопросов планеризма и метеорологии значительно расширено. До настоящего времени, к сожалению, лишь немногие планеристы получают надежный прогноз погоды. Заметно отстаем мы в освоении высотных полетов на 'планерах. Автор считает поэтому необходимым подробнее и более систематизированно, чем раньше, остановиться на этих вопросах.
Глубокую признательность выражает автор Е. П. Вачасову и Е. А. Кирилловой, предоставивших материал и оказавших помощь при написании ряда разделов книги.
Автор с благодарностью примет указания .на недостатки учебного пособия и пожелания по дальнейшему совершенствованию затронутых в нем тем.

Глава I. КРАТКИЕ СВЕДЕНИЯ О МЕТЕОРОЛОГИИ

ОПРЕДЕЛЕНИЕ ПОГОДЫ. МЕТЕОРОЛОГИЧЕСКИЕ ЭЛЕМЕНТЫ. ТЕМПЕРАТУРА И ВЛАЖНОСТЬ ВОЗДУХА. ВЕРТИКАЛЬНЫЙ ГРАДИЕНТ ТЕМПЕРАТУРЫ

В метеорологии под погодой подразумевается физическое состояние атмосферы, в основном ее нижнего слоя — тропосферы, до высот 8—10 км (во внетропических широтах). Физическое состояние атмосферы определяется рядом основных метеорологических элементов — температурой, влажностью, давлением воздуха, ветром, осадками, видимостью, облачностью и пр. Температура воздуха — один из определяющих элементов погоды. В тропосфере с высотой она понижается в среднем на 6° С при подъеме на каждый километр или на 0,6° С на каждые 100 м.
Величина изменения температуры, рассчитанная на 100 м по вертикали, называется вертикальным градиент том температуры. Величина, равная 0,6 °С на 100 м, наблюдается наиболее часто и определена как средняя из множества измерений. В действительности вертикальный градиент температуры в умеренных широтах земного шара изменчив и зависит от времени года и суток, характера атмосферных процессов, а в нижних слоях тропосферы — главным образом от температуры подстилающей поверхности.
В теплое время года, когда близкий к поверхности земли слой воздуха достаточно нагрет, характерно понижение температуры с высотой, причем величина падения превышает даже 1 °С на каждые 100 м подъема. Зимой, при сильном охлаждении поверхности земли и приземного слоя воздуха, температура часто не понижается, а растет с высотой, т. е. возникает инверсия температуры. Подобные слои воздуха имеются в любое время года и на различных высотах. Слои инверсии и изотермии (температура с подъемом не меняется) играют важную роль в возникновении вертикальных движений воздуха и облакообразовании.
Величины изменения температуры с высотой во многом влияют на полет на планере, так как скорости восходящих потоков зависят непосредственно от величин вертикального температурного градиента. Влажность воздуха — еще один важный элемент погоды. С высотой:
она также падает. Почти половина всей влаги сосредоточена в первых полутора километрах атмосферы, а в первых пяти — около 90% всего водяного пара.
Изменения температуры и влажности с высотой существенно влияют на так называемую устойчивость атмосферы, облакообразование и термическую конвекцию. Подробнее этот вопрос будет освещен в разделе «Аэрологическая диаграмма».

ВОЗДУШНЫЕ МАССЫ

Атмосфера неоднородна не только по вертикали, но и в горизонтальном направлении. Большое различие физических свойств воздуха на одинаковых высотах часто можно обнаружить на близком расстоянии. Особенно резки эти различия для тропосферы. Массы воздуха, перемещаясь над различной по своему характеру подстилающей поверхностью Земли (материки или океаны, пустыни и степи, лесные массивы и болота), приобретают новые физические свойства, присущие географическим районам, где они движутся. Процесс этот называется трансформацией. Поскольку воздух никогда не остается в покое, то и его трансформация непрерывна. Заметнее всего при трансформации изменяются температура и влажность воздуха. Изменения эти особенно значительны три перемещении воздуха из одних широт в другие или на иную подстилающую поверхность, например с океана на сушу. Воздух, двигаясь над однородной поверхностью с севера на юг, обычно нагревается и, удаляясь от состояния насыщения, становится, как принято говорить, сухим. При движении с юга на север он охлаждается и, следовательно, приближается к состоянию насыщения, при малом запасе влаги становится насыщенным — влажным. Часть влаги, содержащейся в воздухе, в соответствующих условиях конденсируется и выпадает осадками. Содержание влаги в воздухе быстро повышается при перемещении его над большими водными бассейнами Он увлажняется медленнее над малоувлажненной подстилающей поверхностью.
Кроме непрерывных изменений температуры и влажности воздуха (обусловленных тепло- и влагообменом с подстилающей поверхностью) меняются и его оптические свойства. Над пустынями и индустриальными районами он мутнеет от механических примесей — взвешенных частиц пыли и продуктов сгорания. Поглощение пылью солнечной радиации способствует более интенсивному нагреванию воздуха. Над океанами он обогащается солями морской воды.
Влага, взвешенные частицы пыли или продукты сгорания, а также морские соли делают воздух менее прозрачным. Это, в конечном счете, ухудшает горизонтальную и вертикальную видимость наземных ориентиров и значительно усложняет полеты на летательных аппаратах, в том числе и на планерах, а иногда делает их невозможными
Если воздух долго задерживается над одинаковой подстилающей поверхностью, то на огромном пространстве он приобретает относительную однородность. Такие сравнительно однородные массы воздуха, простирающиеся на огромные расстояния по горизонтали и вертикали, называются воздушными массами. Их обычно называют по географическому району, откуда они приходят: из Арктики — арктические, из умеренных широт — умеренные, из тропиков — тропические. Воздушные массы бывают холодные и теплые. Воздушная масса, поступающая на более холодную подстилающую поверхность, называется теплой, на более теплую—холодной. В синоптической метеорологии воздушные массы обозначают условно. Над территорией Европейской части СССР наиболее часто ворочаются следующие воздушные массы:
арктический воздух (АВ), а в зависимости от характера подстилающей поверхности (океан или материк)— морской (мАВ), континентальный (кАВ);
умеренный воздух (УВ), морской умеренный воздух (мУВ), континентальный (кУВ);
тропический воздух (ТВ), морской (мТВ), континентальный (кТВ).
Арктический воздух формируется практически _всюду за Полярным кругом, исключая Норвежское море и незамерзающую часть Баренцева, а летом — надо льдами Арктики. Морской арктический воздух на Европейскую территорию СССР вторгается с северо-запада, а континентальный арктический воздух — с северо-востока. На юг Европы арктический воздух проникает до Альп и Кавказа, иногда и южнее. Для Азии характерен континентальный арктический воздух так как до вторжения сюда арктический воздух проходит над льдами и снегами.
Морской умеренный воздух достигает материка преимущественно после длительного перемещения над относительно теплыми морями и океанами. Его свойства в одних случаях близки свойствам морского арктического воздуха в других — морского тропического воздуха.

Таблица 1
Основные летние характеристики воздушных масс, наиболее часто встречающихся над территорией Европейской части СССР
001
Примечания:
1) ^—ливневые осадки в виде дождя; Си — кучевые облака;
Cb — кучево-дождевые облака;
2) системы конденсации водяного пара (облачность, осадки и т. п) в любой воздушной массе в каждом конкретном случае определяются температурой и влажностью воздушной массы и добавочными факторами: температурой подстилающей поверхности, направлением смещения воздушной массы, временем года и суток. Условия погоды в каждой воздушной массе могут быть поэтому очень разнообразными и существенно отличаться от типичных условий погоды, указанных в таблице.


Континентальный тропический воздух летом (при длительной малооблачной погоде со слабыми ветрами) может формироваться непосредственно над материками примерно до 50° северной широты. Основные летние характеристики приведенных воздушных масс даны в табл. 1. Для районов Средней Азии, Дальнего Востока температурные характеристики будут, естественно, иными. Соотношение же температур между различными воздушными массами, в общем, сохраняется.

АТМОСФЕРНЫЕ ФРОНТЫ

Существенные различия в распределении температуры и давления в горизонтальном направлении возникают из-за неравномерного нагревания поверхности земли и воздуха. Величины этих изменений на единицу расстояния называются соответственно горизонтальными градиентами температуры и давления. Появление вышеупомянутых градиентов обусловливает различные по интенсивности движения воздуха. Чем больше горизонтальные градиенты, тем скорее движется воздушная масса, меняя по пути физические свойства. Движущиеся в разных направлениях, резко отличные по своим физическим свойствам воздушные массы часто сближаются. Это приводит к образованию переходных или фронтальных зон.
Фронтальных зон особенно много в умеренных широтах. Здесь наиболее часты встречи холодного воздуха, движущегося с севера, и теплого — с юга. Величины горизонтальных контрастов температуры здесь больше, чем где-либо на земном шаре.
Фронтальные зоны непрерывно возникают, обостряются и разрушаются. Они бывают различными по интенсивности. Зависит это от разности температур встречающихся воздушных масс. Формирование фронтальной зоны сопровождается возникновением поверхностей раздела холодных и теплых воздушных масс. Эти поверхности раздела называются атмосферными фронтами. Они имеют наклон всегда в сторону холодного, более тяжелого воздуха, который располагается под теплым воздухом узким клином. Угол наклона фронтальной поверхности к горизонту очень мал, около 1°.
002

Рис. 1. Разделы между холодными и теплыми воздушными массами:
a — теплый фронт, б — холодный фронт.

На приведенных в книге рисунках вертикальный масштаб для наглядности увеличен в 100 раз, поэтому угол наклона фронтальной поверхности смотрится крутым. Атмосферные фронты в средних широтах простираются до высоты 8—12 км. Иногда они обнаруживаются и в нижних слоях стратосферы.
Встретившиеся холодные и теплые воздушные массы все время движутся. Одновременно перемещается то в одну, то в другую сторону и разделяющая их фронтальная поверхность. В зависимости от того, какая масса «сильнее», а следовательно, в какую сторону движется фронт, его называют теплым или холодным. На рис. 1 показаны разделы между холодными и теплыми воздушными массами.
Для сокращения форма облаков дается в виде следующих обозначений: Ci — перистые, Сс — перисто-кучевые, Cs — перисто-слоистые, Ac — высоко-кучевые, As — высоко-слоистые, Sc — слоисто-кучевые, St — слоистые, Ns — слоисто-дождевые, Сu — кучевые, Cb — кучево-дождевые. Основные формы облаков имеют виды и разновидности, которые также обозначаются условно. Например, видом кучевых облаков являются кучевые мощные облака (Сu cong.), видом слоистых — слоистые разорванные (St fr.) (в метеорологии их также называют облаками «плохой погоды»).
Зона облаков и осадков (см. рис. 1) в системе теплого фронта значительно больше, чем холодного. Общая протяженность системы облаков теплого фронта 700 — 900 км. Появление перистых облаков Ci, сменяющихся затем перисто-слоистыми Cs, — первый признак приближения теплого фронта. Давление начинает падать, постепенно усиливается ветер, который при наиболее частой ориентации линии фронта (от центра цикла, области пониженного давления) с северо-запада на юго-восток имеет юго-восточное или южное направление. Появляются высокослоистые As облака, переходящие затем в слоисто-дождевые Ns. Начинается выпадение осадков, давление продолжает падать. Усиление ветра, разрушающего приземный слой инверсии, способствует значительному согреванию воздуха задолго до прохождения фронта. Оно отмечается быстрым повышением температуры, резким поворотом ветра вправо (в нашем примере — на юго-западный), прекращением или резким ослаблением падения давления, прекращением осадков. Иногда температура за теплым фронтом бывает даже ниже температуры перед ним (летом в дневные часы). Это явление называется маскировкой теплого фронта. В предфронтальной воздушной массе летом в дневные часы могут наблюдаться кучевые облака Си. В метеорологии их называют также облаками «хорошей погоды».
Для планеристов облака такого типа — признак восходящих потоков, вершинами которых и служат эти кучевые облака. Следовательно, перед теплым фронтом в летний день есть условия для парящих полетов. Скорость вертикальных восходящих потоков с приближением фронта будет падать пропорционально уменьшению освещенности земной «поверхности солнцем. Как только прекратится нагрев подстилающей поверхности, исчезнут и восходящие потоки, а вместе с ними и облака «хорошей погоды». После прохождения теплого фронта, например в теплое время года утром несколько часов, а иногда и весь день, парящей погоды не бывает. Это зависит от количества выпавших осадков и интенсивности последующего прогрева подстилающей поверхности.
Мощные кучево-дождевые облака Cb — основная форма облаков холодного фронта. Они наблюдаются в виде узкого вала непосредственно перед линией фронта. При растекании из них могут образоваться в небольшом количестве перистые Ci, перисто-слоистые Cs, перисто-кучевые Сс, высоко-кучевые Ас и слоисто-кучевые Sc облака, а под ними в зоне выпадающих ливневых осадков обычно наблюдаются разорвано-слоистые St fr. облака («плохой погоды»). Иногда прохождение холодного фронта сопровождается грозами и шквалами. Ширина зоны перед фронтом, где наблюдаются кучево-дождевые облака и выпадают ливневые осадки, составляет 50—100 км. Такая зона может быть не сплошной, а ночью облака типа Сb могут вообще размываться, в чем одно из отличий холодных фронтов от теплых. Происходит это 'потому, что днем усиливаются конвективные движения в связи с прогревом подстилающей поверхности. На рис. 2 схематически изображено изменение интенсивности холодного фронта в течение дня.

003

Рис.2. Изменение интенсивности холодного фронта в антициклональной воздушной массе днем.

Холодные фронты подразделяются на медленно и быстро движущиеся. Облачная система холодного фронта первого рода (медленно движущегося) напоминает облачность теплого фронта, расположенную в обратном порядке. Облачная система и зона обложных осадков будет при этом более узкой, чем в случае теплого фронта (рис. 3).

004
Рис.3. Холодный фронт первого рода.

В случае холодного фронта второго рода (быстро движущегося) облачность выдвинута вперед. Непосредственно на линии фронта Образуется кучево-дождевая облачность, вершина которой, благодаря сильным потокам, наверху вытягивается в виде наковальни вперед по движению фронта. Непосредственно за линией фронта облачность не образуется, и быстро наступает 'прояснение. С холодным фронтом этого типа связана узкая зона (ширина до 10—30 км) облачности ливневых осадков (рис. 4).

005
Рис.4. Холодный фронт второго рода.

Через пункт наблюдения такой фронт проходит своей облачной системой иногда меньше чем за 1 ч, тогда как холодный фронт первого рода может проходить пункт наблюдения более 10 ч.
Таким образом, перед холодным фронтом возможны парящие полеты на планерах. Осуществлять их, однако, необходимо особо осторожно. Прохождение холодных фронтов сопровождается усилием ветра, иногда до штормового, выпадением ливневых осадков, ухудшением горизонтальной и вертикальной видимости наземных ориентиров из-за поднятой вверх пыли. Скорости восходящих потоков по мере приближения фронта возрастают и иногда превышают 5—6 м/с (по прибору). Все эти факторы очень опасны для планеристов. Они усложняют технику пилотирования либо делают полеты невозможными. Планируя полеты, необходимо учитывать скорость движения холодного фронта и назначать маршрут с таким расчетом, чтобы окончить полет за 2—3 ч до его прихода. Если спортсмен все же попал в сложные условия или видит, что, продвигаясь дальше по маршруту, он непременно в них попадет, надо уходить из опасной зоны в сторону движения фронта. Покинув опасную зону, планерист должен вернуться на аэродром. Если это невозможно, надо произвести посадку на подобранную с воздуха площадку, закрепить планер.
Кучевые и мощно-кучевые облака образуются и после прохождения холодного фронта, по мере прогрева подстилающей поверхности и поступления холодного воздуха за фронтом (см. рис. 2). Следовательно, парящие условия также есть, и тем лучше, чем дальше уходит холодный фронт и больше прогревается земная поверхность.
Существуют и другие разновидности фронтов, образующиеся при смыкании двух основных фронтов: теплого и холодного. Фронты смыкаются из-за разных скоростей движения. Атмосферные фронты обычно связаны с циклоном. Холодный фронт в системе развивающегося циклона движется быстрее теплого. При разных скоростях движения холодный фронт через некоторое время догоняет теплый. Смыкаясь с ним у поверхности земли, он вытесняет теплый воздух вверх, образуя так называемый фронт окклюзии (рис. 5).

006
Рис.5. Холодный фронт постепенно догоняет теплый. Смыкаясь, они образуют фронт окклюзии.

В системе фронтов окклюзии взаимодействуют три воздушные массы. Наиболее теплая из них уже не соприкасается с поверхностью земли. Имеется поэтому еще и линия верхнего фронта. Проекция его на плоскость приземной карты располагается впереди линии теплого фронта окклюзии и позади холодного (рис. 6).

007
Рис.6.  а — холодный фронт окклюзии, б — теплый фронт окклюзии.

Поскольку верхний фронт располагается близко от приземного, то на картах погоды их не разграничивают. На Европейской территории страны летом типичны холодные фронты окклюзии, вдоль которых бывают грозы, часто туманы, а ночами прояснения. Направление ветра при прохождении фронта окклюзии иногда меняется почти на 180°. Вблизи этих фронтов Для парящих полетов условия погоды не благоприятны.




 
Яндекс цитирования Карта сайта
При копировании материалов ссылка на sevparaplan.com обязательна